Hip Preservation (Dysplasia)

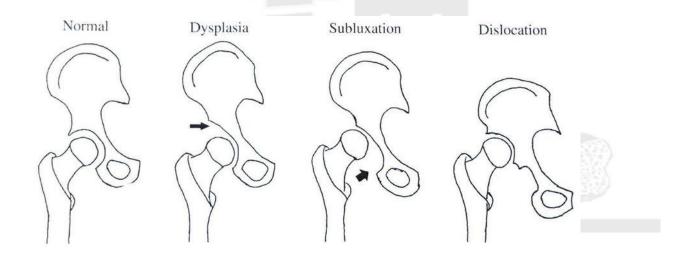
@NAILEDITORTHO

Acetabular Dysplasia

Classic- results from insufficiency of anterosuperior acetabulum

3 types: anterosuperior, global, and posterosuperior

In a non dysplastic hip- acetabular labrum functions to seal hip join rather than absorb direct load

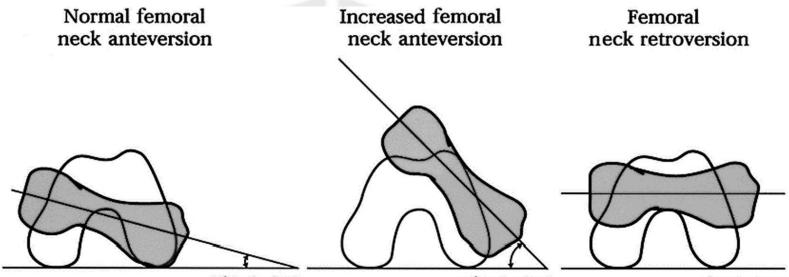

In dysplastic hip- labrum and acetabular rim are subjected to direct load- leads to labrochondral pathology

Inc forces> labrum hypertrophy

Acetabular Dysplasia Natural History

Mostly based on lateral center edge angle - less than 20 leads to early OA

LCEA <30 degrees- assoc w/ 3.3 risk of OA

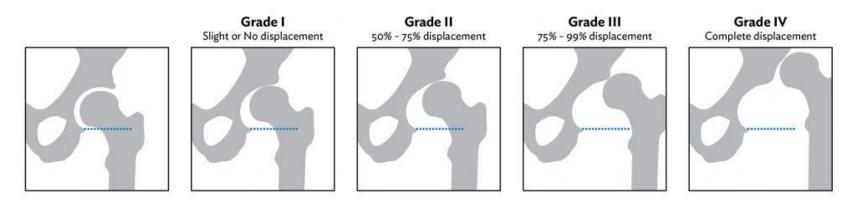

Femoral Deformity

Usually less severe

Increased femoral anteversion- places additional stress on anterior hip stabilizers (normal is 5-15 degrees)

Femoral anteversion role

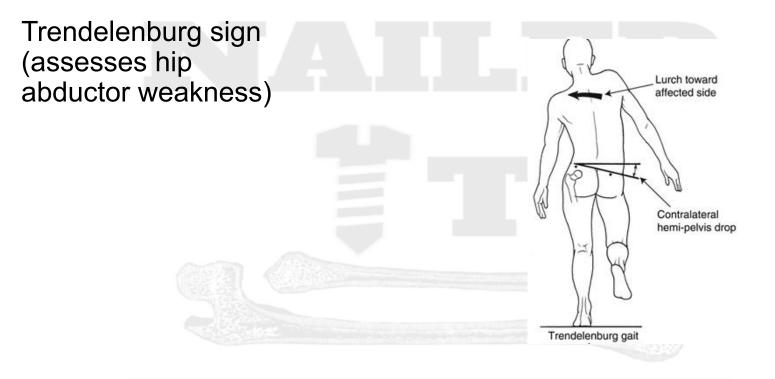
Combined acetab and femoral anteversion >40 or femoral anteversion >20deg is a risk factor for hip OA


15° Angle of FNA

45° Angle of FNA

Classification

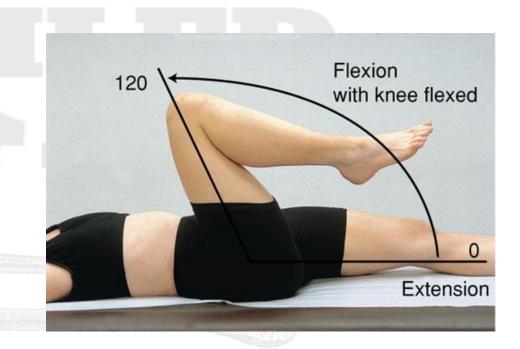
Crowe


Crowe Classification of Dislocation Severity

History

Groin pain 20% w/ low back pain, lateral hip pain (abductor overload) Activity related pain w/ insidious onset and gradual progression +FH of dysplasia Female

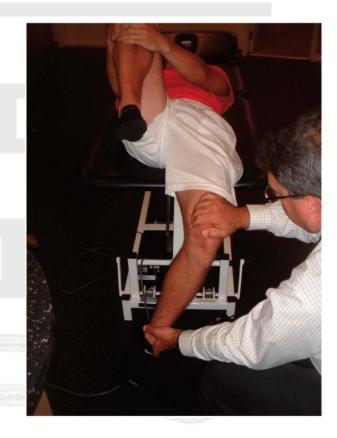
Physical Exam



Physical Exam

Supine hip ROM (flexion, abduction, adduction, IRF, ERF)

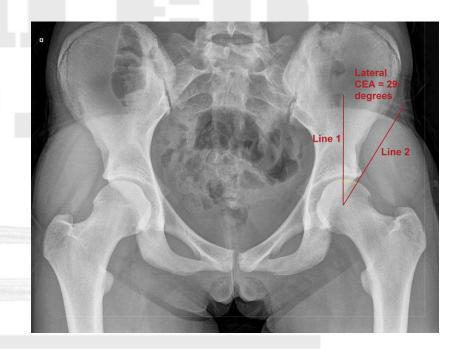
Increased IRF- assoc w/ inc anteversion


decreased/ normal IRF- assoc w/ dysplastic hips

Physical Exam

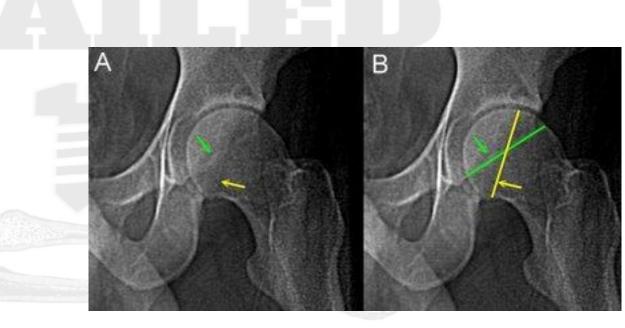
Apprehension test (hip extension + ER)positive test assoc w/ instability Prone IR/ER

Craig test Diagnostic hip injection

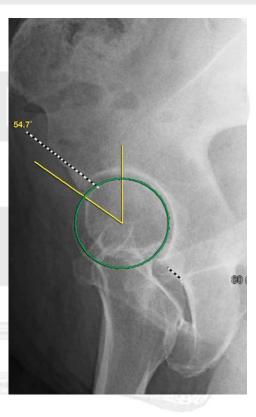

919041@1481859623907/Anterior-apprehension-test-Also-known-as-

Lateral center edge angle (LCEA)

Center of femoral head to lateral extent of acetabular sourcil


<20 deg- acetabular dysplasia 15-20 deg- mild acetabular dysplasia

20-25 borderline dysplasia



Acetabular inclination / tonnis angle >15 degrees = dysplasia, 10-15 borderline Acetabular angle A: using Hilgenreiner's line in children using 'pelvic tear drop' in adults

Acetabular version Pelvic rotation Pelvic tilt

False profile radiographmeasures anterior acetabulum coverage 65 degrees of pelvic rotation Anterior center edge angle <20 indicates dysplasia

tps://cdn.mdedge.com/files/s3fs-public/ajo-046010017 f6.jpg

45 degree dunn , frog lateral

Alpha angle, head neck offset ratio

Advanced Imaging

MRA-identify morphology of acetabular labrum + degree of hypertrophy

Managing hip dysplasia

LCEA <20deg

Correction of acetabular dysplasia through acetabular reorientation

Ganz- 2988- a new bernese POA- cuts the ischium, pubis, ilium, + posterior column

PAO- multiple techniques- rectus sparing techniques Lateral overcoverage> can lead to FAI + ROM limitations

Managing hip dysplasia

Hip arthroscopy

w/ labral repair and capsular
plication- can lead to failure rate of 18%

Hip arthroscopy + PAO- may optimize outcome of PAO if hip pathology present

Central compartment arthroscopy can address labral + chondral pathology + minimize soft tissue extravasation

Inferior outcomes after PAO

Advanced articular cartilage damage

Post PAO LCEA <30 degrees or >40 degrees assoc w/ worse outcomes

Post- pao FAI

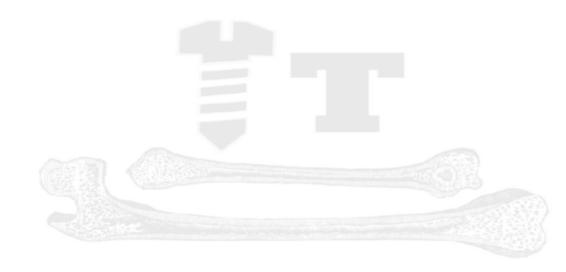
Post PAO ROM of 90deg hip flexion + 15 degree IRF is satisfactory

Managing Borderline dysplasia

LCEA - 20-25 degrees

Borderline dysplasia is very common, 3x as common as true acetab dysplasia

Pts may have symptomatic hip instability + impingement


Should know factors

Sex, age, soft tissue laxity (beighton), ROM, femoral version, and head-neck morphology

Hip arthroscopy v PAO.. controversial High rates of failure of arthroscopy (>18%) in setting of dysplasia

Atraumatic hip instability

Tx: arthroscopic capsular plication

Thank you Dr. Al' Khafaji !

Sources:

FIFTH EDITION

eLee, Drez, & Miller's

Orthopaedic Sports Medicine

Principles and Practice

Mark D. Miller Stephen R. Thompson

SEVIER