## Podcast Notes- Operative Repair of RTC Tears w/ Dr. Denard

Principles:

- Restore Biomechanical Function
- Restore force coupling


## Anatomy

Rotator cable

- Cable- thickening of the cuff
- Crescent- thinner tissue that attaches to cuff
- Cable-crescent complex- a thickening of CH ligament + consistently at avascular zone
- Cable functions similar to a load bearing suspension bridge
- Forces transferred from cuff to rotator cable as distributed load> stress shields the thinner crescent tissue
- So in older folks, the avascular tissue ahs more stress shielding
- So for example- even w/ a SS tear- using the cable the forces can still be distributed across the cuff


## Seeing the tear

- Factors to control bleeding:
- Control BP (90-100)
- Pump pressure
- Run at 60 mmHg - can be inc to 75 mm for (10-15 min)
- Fluid flow rate
- 8 mm inflow cannula may be best to maximize flow
- Turbulence
- Results from rapid fluid out the shoulder
- Limit turbulence by limiting outflow of fluid (finger or cannula)
- Increasing pressure makes it worse, chasing bleeders w/ electrocautery is counterproductive


## Tear patterns

- Based on 4 major patterns
- crescent shaped
- Classic standard, excellent medial-lateral mobility
- Can be repaired
- U shaped
- Extends further medially than crescent
- Tear apex near glenoid rim
- Repair- can do medial to lateral repair, then repair w/o tension
- L shaped
- Similar to U shaped tears- one leaf more mobile than the other
- Repair: longitudinal split suture side-to-side
- If chronic- pull of posterior cuff causes tear to assume more $U$ shaped configuration
- Repair- traction suture to establish location, followed by side-side
- Then repaired to bone
- Massive, contracted, immobile tears
- Difficult to mobilize


## Massive tears

- Two patterns
- Massive contracted longitudinal
- Massive contracted crescent


## Advanced arthroscopic mobilization techniques

- Arthroscopic anterior slide
- Releases interval between supraspinatus and rotator interval - lengthening CH ligament
- Gains $1-2 \mathrm{~cm}$ lateral excursion of SSt
- Double interval slide
- For massive contracte crescent tears
- Gains up to 5 cm additional lateral mobility
- Repairs infra back to bone- inferior half important to release
- Scapular spine must be cleared of surrounding subacromial fibroadipose
- Suprascapular nerve- at risk during posterior slide


## Fixation biomechanics

- Transosseous RCR constructs- fail due to suture cutting through bone
- RCR secured to bone by suture anchor- fail due to suture cut through tendon
- Doubling \# of fixation points to tendon> reduces suture load by 50\%
- > double load anchor
- Optimizing anchor pullout strength
- pull out angle - deadman angle < 45 resists pullout
- Suture abrasion
- Metal anchors- more suture abrasion than biodegradable anchors
- Suture design
- Hole through polymer body (panalok RC)- ethibond suture gets cut
- Effective anchors
- Most meet strength requirements
- Suture type
- No2 Fiberwire- braided, nonabsorbable, polyblend suture equal to no 5 ethibond
- Better than no2 ethibond
- Knot
- Arthroscopic surgeons knot
- Roeder knot

Re-establish RTC footprint
Repair construct

- Optimized construct- double loaded biodegradable polymer suture anchor w/ insert molded suture eyelets
- No 2 fiberwire suture
- 6 throw arthroscopic surgeons knots w/ three RHAP tied w/ double diameter knot pusher
- Double row- optimizes footprint of repaired RTC

Subscap tears

- Working space is limited- typically subscap is repaired first before swelling decreases space
- Subcoracoid stenosis- part of problem necessitating arthroscopic coracoplasty
- If biceps subluxation- arthroscopic tenotomy or tenodesis of biceps
- Chronic tears- comma shaped ligamentous tissue at superolateral border of subscap
- Comma sign- SGHL/CHL complex that is torn from humerus

Massive, contracted, immobile anterosuperior RCT

- Interval slide useful
- CH ligament released from back of coracoid


## Sources:

Burkhart, S. S., \& Lo, I. K. (2006). Arthroscopic rotator cuff repair. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 14(6), 333-346.

