

Show Notes w/ Dr. Anna Cohen- Rosenblum

Basic Sci

- Osseointegration
 - Tyypically describes the fusion of bone to titanium
 - Titanium implants- retained in bone through mechanical stabilization& chemically through direct contact w/ calcium atoms and titanium oxide surface (no protein interlayer) > pure osseointegration
 - Cobalt-chromium
 - Also used, but titanium has a modulus elasticity closer to bone, less thigh pain and stress shielding
 - Porous implant- allows extensive bone formation w/ vascularization + osteoblast activity within implant

Cementless fixation

- Osseointegration- attachment of lamellar bone to implants w/o intervening fibrous tissue
- Want to minimize micromotion
- Micromotion >150um leads to fibrous tissue formation
- 40-150 um- bone + fibrous tissue
- <20um predominant bone formation

Factors that influence stability

- Geometry, roughness + stem coating, prep technique + bone quality

Surfaces/coating

- Ingrowth- bone grows inside a porous surface
 - Requires pore size between 50 & 400um, % of voids w/i coating should be between 30-40%
 - Surfaces
 - Sintered beads- microspheres of cobalt chromium ot titanium alloyattached by high temp
 - Fiber mesh- metal pads attached by diffusion bonding
 - Porous metals- uniform 3D network, w/ high interconnectivity of voids + porosity (75-80%)
 - Compared w/ fiber metal coatings 30-50%
- Ongrowth- bone grows onto roughened surface
 - Created by grit blasting or plasma spraying
 - Grit blasting- bombards implant w/ small abrasive particles like aluminum oxide

- Can be used as an adjunct below fiber mesh ro sintered beads
- Plasma spraying- mixing metal powders w/ inert gas thats pressurized and ionized- forming a high energy flams
 - Molten material sprayed onto implant
 - Less porosity than ingrowth, but 90% implant fatigue strength retained
- Hydroxyapatite- a calcium phosphate compound thats plasma sprayed directly on implant alone or over porous coating
- In general- surfaces should b circumfrential + continuous
 - Enhances metaphyseal osseointegration + proximal stress transfer and decrease bone loss from stress shielding
- Most common alloys used- cobalt-chromium-molybdenum + titanium aluminum vanadium alloys MC used for cementless femoral stem design

Cementless design + outcomes

- 7 main types
 - Type 1- short stem subclassified by increasing fixation
 - Type 2-5 conventional straight stems, classified by increasing fixation
 - Type 6- modular- classified as modular neck or body
 - Type 7- curved, anatomic design
- Type 1- short + ultra short stem
 - Designed as alternative to conventional stems to preserve proximal femooral bone stock
 - Cutoff generally <120mm
 - Indicated- primary THA
 - Stem advantages:
 - Bone preservation
 - Less thigh pain (less diaphyseal engagement)
 - Fixation in metaphyseal bone similar to physiological femur
 - May also require less OR time
 - Outcomes- unsatisfactory to comparable to traditional stems
 - Type 1A (femoral neck)
 - Femoral neck fixation only
 - Stability- through cancellous compresion
 - Femoral neck variability leads to variations (varus/valgus stems, geometrical shapes such as wedge type, cylindrical, threaded) +/- collar for load distribution
 - Clinical outcomes are variable
 - Type 1B- calcar loading stem
 - Necksparing stems
 - Achieve fixation in calcar + proximal femoral cortex (goal to not resp cancellous bone but impact metaphyseal bone to obtain cortical contact in load bearing region)
 - Femoral neck is preserved and adds some stability

- Various results (ex mayo zimmer stem)
- Lack of femoral canal reaming. Stem malalignment and intraop femur fractures occur
- Type 1C- calcal-loading stem w/ lateral flare
 - Lateral flare achieves fixation in lateral cortex and calcar + allows load distribution in proximal part of femur, resembling psysiological stresses
 Ex- proxima stem by depuy
- Type 1D- shortened tapered stem
 - Similar to conventional, but has a shorter distal taper to avoid stress shielding
 - Often extends only to proxial aspect of diaphysis, designed for proximal stress transfer
 - Ex fitmore stem zimmer
- Type 2- single wedge (single taper) stem
 - Engage metaphyseal bone in medial/lateral plane only, flat and thin in anterior plane
 - Allows for rotational stability , initial stability obtained by wedge fixation in medial/lateral plane or 3 point fixation along stem
 - Primary the
 - Excellent long term outcomes. Good osseointegration along proximal coating
- Type 3- double wedge (dual taper), metaphyseal fillilng stem
 - Engage proximal femur in medial/lateral and anterior/posterior planes
 - Dome require diaphyseal engagement to enhance rotational stability
 - General indication for primary THA
 - Excellent long term outcomes
 - Stress shielding + thigh pain less than cylindrical fully coated stems
- Type 4- gradual taper, metadiaphyseal filling stem
 - Smooth gradual taper (rather than abrupt), in AP and medial/lateral plane
 - Fixation achieved at metadiaphseal region
 - Two subtypes: tapered round (4A) and tapered rectabgle (4b)
 - Type 4A- Tapered round stem
 - Conical design w/ rounded corners + taper in AP ML plane
 - Proximal ²/₃ are coated
 - Proximal fins or ribs may be present for rotational stability
 - Minimal recent literature (mallory head stem biomet)
 - Good outcomes
 - Type 4B- tapered rectangle stem
 - Straight stem prosthesis w/ rectangular cross section more rotational stability
 - 3 point of fixation in metadiaphyseal junction due to straight stem and curved femur
 - Zweymuller zimmer stem
- Type 5- diaphyseal engaging stem

- Better in hips where proximal fixation is difficult to achieve
- Indicated in primary THA hips w/ proximal bone deficiency or revision THA
- 2 types: tapered spline or cone stems and cylindrical fully coated
- Type 5A- Tapered spline-cone stem
 - Roughened surface w/ longitudinal splines or ribs
 - Stem wedges into femoral medullary canal providing axial + bending stability
 - Roughened surface- bone ongrowth
 - May be used again to bridge prox bone defects and revising bone deficient hips
 - Ex: wagner stem sulzer ortho
- Type 5B- cylindrical fully coated stem
 - Rely on initial fixation along entire prosthesis- particular diaphyseal engagement
 - Useful in patients with proximal femur deficiency
 - Some have a collar that transmits forces to calcar
 - Others have uncoated distal stem with distal flutes to enhance stability
 - Concern for stress shielding and thigh pain given extensive coating
- Type 6- modular stem
 - Theoretical- stem fine tune anteversion , length, and offset
 - Disadvantagex fretting corrosion at
 - Indications revision or complex primary tha in patients with abnormal anatomy
 - Risk for fracture at modular junction
 - Cobalt chrome more crevice corrosion and fretting of neck stem taper
 - Titanium is more likely to cold weld
- Type 6A stem with modular neck
 - Allows ability to adjust neck shaft angle for complex cases
 - Type 6B stem with modular body
- Useful in complex deformities like hip dysplasia
- Allows separate preparation for metaphyseal proximal body or sleeve and diaphyseal stem
- Good short to mid term outcomes. Useful in revision surgery
- Type 7 Anatomic stem
 - Bow posteriorly in metaphysis and anteriorly in diaphysis
 - Fixation through metaphyseal fit and fill distal bow

Cemenfed v cementless

- Similar outcomes , also similar outcomes between short and conventional sfemz
- For otherz poor evidemce to supportmusemof most stems

-